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This paper proposes a modified version of pole assignment self-tuners for linear time-invariant systems subjected to unknown 
constant disturbances. It is shown that this version also has the local convergence property established by Goodwin and Sin(1981, 
1984) which was developed for linear systems with no disturbances. Utilizing this property, an error elimination algorithm is 
developed for step references. The performance of this algorithm is demonstrated through a simulation and the result is compared 
with that of a conventional pole assignment self-tuner using an additional integral action. 
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1. INTRODUCTION 

Closed-loop pole assignment self-tuners (Allidina and 
Hughes, 1983; Astr~m, 1980; Eun and Cho; Goodwin and 
Sin, 1981, 1984; Ortega and Kelly, 1984; Wellstead, Prager 
and Zanker, 1979) have been utilized to effectively handle 
non-minimum phase systems since these algorithms do not 
cancel any of system unstable zeros, while modifying only the 
system poles. Goodwin and Sin(1981, 984) have established the 
local convergence of these self-tuners for discrete, determinis- 
tic, linear time-invariant systems which have no disturbances. 
The convergence means that the system inputs and outputs 
remain bounded for all time and that the closed loop poles are 
effectively assigned in the limit for a given desired trajectory. 
This paper proposes a modified version of pole assignment 
self-tuners for the systems subjected to unknown constant 
disturbances (see Fig. 1) and proves its local convergence 
property. Utilizing this property, an error elimination algor- 
ithm is developed for step reference inputs (see Fig. 2(b)]. It 
is shown that, as an alternative of the conventional pole 
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Fig. 2 Block diagram comparison of the pole assignment self- 
tuners to eliminate the system steady-state error 

assignment self-tuners using an additional integral action 
[see Fig. 2(a)], this algorithm can eliminate steady-state 
errors without increasing the minimal order of the controller 
and calculation burden to obtain the controller parameters. 
The transient performance of this algorithm is demonstrated 
through a simulation study and the result is compared with 
that of the additional integral action. 

2. FORMULATION OF THE ERROR 
ELIMINATION ALGORITHM 

Consider a linear time-invariant system subjected to an 
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unknown constant disturbance. The system equation is de- 
scribed by : 

Under these assumptions the algorithms (4) through (14) lead 
to 

A (#- l )y ( t )  = B ( q  ') u(t)  +c  (i) 

where q ' denotes the backward operator and c represents an 
unknown constant disturbance. The polynomials in (1) are 
defined as 

A(q ~ ) = l + & q  ~+-"+a~q ~ 
B(q  1)=baq ~+'"+b,,q -~ 

(2) 
(3) 

(1) {u(t)} bounded 
(2) (y (t) } bounded 
(3) the closed loop characteristic polynomial tends close to 

A*(q -~) in the sense that 

lim[A*(q ~ ) y ( t ) - G ( t - 1 .  q i) y * ( t ) ] : : 0  (15) 

where 

The parameter estimation algorithm is given by 

Q ( t -  2 ) ~ ( t - 1 )  e( t )  
d( t )  = O ( t - 1 )  ~ l + r 1 6 2  

(4) 

O ( t - 1 ) r 1 6 2  (5) 
Q(t) = O ( t - 1 )  t + ~ ( t ) ~ O ( t _ l ) r  

with Q (0) = sl, 6 is any positive real number, 
where 

e ( t ) ~ = y ( t ) - ~ ( t - 1 )  t O ( t - l )  (6) 
G ( t ) ~ [ - d , ( t ) , ' " , - h ~ ( t ) ,  b1 (t), '",  

7)~(t), 8(, ')] ~ (7) 
r  y ( t - t ) , . . ' , y ( t - r ) ,  u ( t - 1 ) , " - ,  

u ( t - r ) ,  l] ~ (8) 
A(t ,  q i ) ~ l + & ( t ) q - ~ + ' " + 6 ~ ( t ) a  ~ (9) 
B( t ,  q~)G~b, ( t )q - l+" '+b~( t )q  ~ (10) 
and r ~ m a x { n ,  m} 

The modified pole assignment control law is proposed as 
follows : 

s  q ~ ) u ( t ) = P ( t ,  q-')[y*(t)--y(l)] 
...... ! .... i(t q I)6(t) (ii) 

B(t ,  1) " ' 

/ t ( / ,  q - ' ) s  q -1 )+B( / ,  a')fi(t, q ' ) = A * ( q  ') 
(12) 

where y* (t) " the desired output trajectory 

A* (q t) : the desired closed-loop characteristic 
polynomial 

/f(t, q ' ) ~ l + ! , ( t ) q  ' + " - + 1 ~  1(1) q-~+t (13) 
P(t ,  q ' ) ~ f i o ( t ) + p , ( t ) q  1_~ .... +f i , - , ( t )  q ..... (14) 

2.1 The Local Convergence of the Modified Pole 
Assignment Control Law 

To implement the control law proposed in (11), B(/, 1) 
should not be zero for all time. This requires the assumption 
that B(q -~) has no factor of ( 1 - q  ~), i.e., B(1)#0. Then, we 
can choose an initial estimation value of/~(t, q 1) such that 
/?(t, 1) is not zero for all time. The required assumptions 
including the above can be summarized as follows : 

r - 1  

G(t-l, q ' ) ~  b,(t--1)~pk(t-l)q -~-k. 
j = l  k = l  

[Proof] By following the Goodwin and Sin's methodol- 
ogy(1981, 1984) in a straightforward manner, we can easily 
prove this modified version. Hence, except the additional 
parts distinct from their procedures, we will omit the detailed 
discussions and utilize the time-varying operators without 
newly defining them. The filtered values w(t )  and z ( t )  of 
the reference input are modified as follows: 

z ( t ) = B  �9 P y* (17) 

After several steps of arithmetic rearrangements, we can 
obtain the following MIMO time-varying discrete dynamic 
equation. 

[ A*+ [A. s + [P. zT-P~q 
[~.  s 1 6 3  [s L~2] 

{X.b-Ab]-[~ .~-bA]  1 [u(t)] 
A + l B .  P - B f i ] + [ s  X- /~A]J  Ly(t) J = 

w ( t ) - f i  e ( t ) - f i [ g ( t -  1 ) - g ( t ) ]  

i s 
1) 

(18) 

The dynamic equation in the above is very much similar to 
that derived by Goodwin and Sin(1981, 11984) except that the 
t e r m s  f i [ g ( t - 1 ) - 8 ( l ) ]  a nd  [ s  8 ( t - 1 ) - / ~ .  

- -. - (~(1---1~-/~)C(/) ] are added to the left side of the equation. 

From the convergence lemma(1981, 1984) of the estimation 
algorithm it is shown that the coefficients of A( t ,  q - ' )  
and/~( t ,  q<) and 8( t )  converge into certain finite values 
(not necessary to converge into their true values). From the 
pole assignment equation the convergence of the estimated 
parameters leads to the convergence of t;he controller param- 
eters in /5 ( t ,  q l )  and s q--l). Utilizing these results, 
it follows that the above two terms different from Goodwin 
and Sin's(1981, 1984) approach zero as t tends to infinity. 
Utilizing the procedures suggested by Goodwin and Sin(1981. 
i984), we can prove the boundedness of {u(t) } and {y (t) } 
and establish the final part of this theorem given in (15). 

(1) r=max{n ,  m} is known. 
(2) A (q 1) and B (q-1) are relatively prime. 
(3) A*(q <) is an arbitrary stable monic polynomial of 

order (2 r - 1). 
(4) {y* (t)} is an arbitrary bounded set point sequence. 
(5) B(q  l) has no factor of (1-q-1). 

2.2 The Error Elimination Algorithm for 
Step References 

Consider the system described in (1) through (14). Provided 
that the reference input y* (t) is a finite constant value, the 
control algorithm (11) can make the steady state error of the 
closed-loop system approach zero under the redefinition of 
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the ~(t)  given in (8). 

q S ( t ) & [ y ( t ) - y * , . . . ,  y ( t - r ) - y * ,  u ( t - 1 ) , . . - ,  
u ( t - r ) ,  1] r (19) 

[Proof] Utilizing the convergence property of the modified 
pole assignment self-tuner, this corollary can be proved in a 
straightforward manner by rewriting (11) and by subtracting 
A(q ~)y* from both sides of the system Eq. (1). 

If(t, q ' ) u ( t ) = - f i ( t ,  q ')37(t) 

If(t, q-i) c(t) 
~( t ,  1) 

(20) 

A(q  ' ) ( y ( t ) - y * ) = B ( q - 1 ) u ( t ) + c  A(q-~)y  * (21) 

where 37 ( t).~ y ( t ) - y*. The last equation can be rewritten as 

A(q  ' ) 37 ( t )=B(q  - ~ ) u ( t ) + c '  
by defining c 1 c - A ( 1 ) y * .  

(22) 
(23) 

The resulting system described in (22) can be interpreted as 
a system whose input, output and offset are u ( t ) ,  37(t), 
and c ~, respectively, while the reference input value for 37 (t) 
is always zero. It is noted that y* is included in the new 
disturbance term defined in (23). Considering the convergence 
property described in (15) and 37"(t) 0, it can be shown 
that 37(t) approaches zero, i.e., y ( t )  converges into y* as 
time tends to infinity. 

3. D I S C U S S I O N S  A N D  
CONCLUSION 

We have proposed the modified version of pole assignment 
self-tuners as shown in Fig. 1, and established its local conver- 
gence property. Utilizing this, an error elimination algorithm 
is developed for constant reference inputs. Fig. 2 describes 
structures of the pole assignment self-tuners utilizing (a) 
additional integral action and (b) the proposed error elimina- 
tion algorithm. The structural difference between the two is 
that the proposed algorithm posseses the parameter 
estimator which utilizes control inputs and system errors 
whereas the estimator of the conventional algorithm utilizes 
control inputs and system outputs. The performances of these 
self-tuners are investigated by a series of simulation works. 
During the simulation instead of the recursive least square 
algorithm [Eq. (4) through (10)] the recursive projection algor- 
ithm (Eun and Cho) is utilized as a parameter estimation 
algorithm without any change of the above stability results 
(Goodwin and Sin, 1981, 1984). The simulation conditions and 
its numerical results are precisely described in Table 1. The 
reference input used for this simulation is given by y* (t) =1 
for 0_<t<60 and - - I  for 60<_t<_120. 
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Fig. 3 Simulation results 

PARAMETER6 

I i 

GO 80 100 t2~ 

(y*(t) =1 for 0~t<60 and y * ( t ) = - 1  for 60<_t<120) 

As shown in Fig. 3, both the integral action and the 
proposed algorithm can make the system steady-state error 
approach zero, although the system parameters do not con- 
verge their true values. For the discussion about the transient 
performances we examine the response for the second step (at 
t = 60) because the first step responses are severely dependent 
on the initial parameter estimates. From these responses it 
can be seen that the proposed algorithm takes slightly longer 
settling time to reach the steady state. This is due to the fact 
that parameter adaptation time is additionally required for 
the algorithm because the variation of reference inputs is 
regarded as a variation of a system disturbance parameter to 
be estimated. Therefore, it can be concluded that the perfor- 
mance of the proposed error elimination algorithm is very 
dependent upon the adaptation speed of the parameters, i.e., 
the capability of the parameter estimation algorithm. In view 
of calculation burden the proposed algorithm is comparable 
with the additional integral action, because the additional 
integral action increases the minimal order of the controller 
while the proposed algorithm increases the number of param- 
eters to be estimated. But when a system inherently includes 

Table 1 The numerical data for the example studies(y*(t) =1 for 0~< <60 and y*(t) - - 1  for 60<tN120) 

t y ( t ) ~, & ~, 62 d 
True values 2. 0.96 0.5 1. 1. 
Adding 0 0. 0. 0.5 1. 0. 0. 
integral 60 0. 99946 - 1.47796 0. 93586 0. 36478 0.81424 1.27496 
action 120 1.00000 - 1.96793 0. 74518 0. 37613 0.89392 1. 03559 
Using the 0 0. 0. 0.5 1. 0. 0. 
proposed 60 0. 98414 2. 00359 0. 72193 0. 61097 1. 31472 1. 33181 
algorithm i20 -0.99798 - 1. 91446 0. 94999 0. 90310 1. 22773 1. 36451 
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a constant disturbance as most practical systems do, the 
proposed algorithm reduces the calculation burden because it 
does not increase the number of parameters to be estimated. 
These results indicate that for step reference inputs the 
proposed error elimination algorithm can be a good alterna- 
tive to the additional integral action. 
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